PDFSource

Bitcoin Whitepaper PDF

Bitcoin Whitepaper PDF Download

Bitcoin Whitepaper PDF Download for free using the direct download link given at the bottom of this article.

Bitcoin Whitepaper PDF Details
Bitcoin Whitepaper
PDF Name Bitcoin Whitepaper PDF
No. of Pages 11
PDF Size 0.94 MB
Language English
CategoryEnglish
Source ussc.gov
Download LinkAvailable ✔
Downloads17
If Bitcoin Whitepaper is a illigal, abusive or copyright material Report a Violation. We will not be providing its PDF or any source for downloading at any cost.

Bitcoin Whitepaper

Dear readers, here we are presenting Bitcoin Whitepaper PDF to all of you. Bitcoin is a decentralized digital currency. It is very popular in the market. The total market capital of bitcoin is >US$775 billion. The word bitcoin was defined in a white paper published on 31 October 2008.

There are many people who are looking to get a defined investment method so that they can seek a good amount of interest on return. That’s the reason that people are hugely investing in various kinds of cryptocurrencies and other are lots of options available for the investors.

Bitcoin Whitepaper Explained PDF – Further Applications

  1. Savings wallets. Suppose that Alice wants to keep her funds safe, but is worried that she will lose or someone will hack her private key. She puts ether into a contract with Bob, a bank, as follows:
  • Alice alone can withdraw a maximum of 1% of the funds per day.
  • Bob alone can withdraw a maximum of 1% of the funds per day, but Alice has the ability to make a transaction with her key shutting off this ability.
  • Alice and Bob together can withdraw anything.

Normally, 1% per day is enough for Alice, and if Alice wants to withdraw more she can contact Bob for help. If Alice’s key gets hacked, she runs to Bob to move the funds to a new contract. If she loses her key, Bob will get the funds out eventually. If Bob turns out to be malicious, then she can turn off his ability to withdraw.

  1. Crop insurance. One can easily make a financial derivatives contract but using a data feed of the weather instead of any price index. If a farmer in Iowa purchases a derivative that pays out inversely based on the precipitation in Iowa, then if there is a drought, the farmer will automatically receive money and if there is enough rain the farmer will be happy because their crops would do well. This can be expanded to natural disaster insurance generally.
  2. A decentralized data feed. For financial contracts for difference, it may actually be possible to decentralize the data feed via a protocol called “SchellingCoin”. SchellingCoin basically works as follows: N parties all put into the system the value of a given datum (eg. the ETH/USD price), the values are sorted, and everyone between the 25th and 75th percentile gets one token as a reward. Everyone has the incentive to provide the answer that everyone else will provide, and the only value that a large number of players can realistically agree on is the obvious default: the truth. This creates a decentralized protocol that can theoretically provide any number of values, including the ETH/USD price, the temperature in Berlin or even the result of a particular hard computation.
  3. Smart multi-signature escrow. Bitcoin allows multi-signature transaction contracts where, for example, three out of a given five keys can spend the funds. Ethereum allows for more granularity; for example, four out of five can spend everything, three out of five can spend up to 10% per day, and two out of five can spend up to 0.5% per day. Additionally, Ethereum multisig is asynchronous – two parties can register their signatures on the blockchain at different times and the last signature will automatically send the transaction.
  4. Cloud computing. The EVM technology can also be used to create a verifiable computing environment, allowing users to ask others to carry out computations and then optionally ask for proofs that computations at certain randomly selected checkpoints were done correctly. This allows for the creation of a cloud computing market where any user can participate with their desktop, laptop or specialized server, and spot-checking together with security deposits can be used to ensure that the system is trustworthy (ie. nodes cannot profitably cheat). Although such a system may not be suitable for all tasks; tasks that require a high level of inter-process communication, for example, cannot easily be done on a large cloud of nodes. Other tasks, however, are much easier to parallelize; projects like [email protected], [email protected], and genetic algorithms can easily be implemented on top of such a platform.
  5. Peer-to-peer gambling. Any number of peer-to-peer gambling protocols, such as Frank Stajano and Richard Clayton’s Cyberdice, can be implemented on the Ethereum blockchain. The simplest gambling protocol is actually simply a contract for difference on the next block hash, and more advanced protocols can be built up from there, creating gambling services with near-zero fees that have no ability to cheat.
  6. Prediction markets. Provided an oracle or SchellingCoin, prediction markets are also easy to implement, and prediction markets together with SchellingCoin may prove to be the first mainstream application of futarchyas a governance protocol for decentralized organizations.
  7. On-chain decentralized marketplaces, using the identity and reputation system as a base.

Miscellanea And Concerns

Modified GHOST Implementation

The “Greedy Heaviest Observed Subtree” (GHOST) protocol is an innovation first introduced by Yonatan Sompolinsky and Aviv Zohar in December 2013. The motivation behind GHOST is that blockchains with fast confirmation times currently suffer from reduced security due to a high stale rate – because blocks take a certain time to propagate through the network, if miner A mines a block and then miner B happens to mine another block before miner A’s block propagates to B, miner B’s block will end up wasted and will not contribute to network security. Furthermore, there is a centralization issue: if miner A is a mining pool with 30% hashpower and B has 10% hashpower, A will have a risk of producing a stale block 70% of the time (since the other 30% of the time A produced the last block and so will get mining data immediately) whereas B will have a risk of producing a stale block 90% of the time. Thus, if the block interval is short enough for the stale rate to be high, A will be substantially more efficient simply by virtue of its size. With these two effects combined, blockchains which produce blocks quickly are very likely to lead to one mining pool having a large enough percentage of the network hashpower to have de facto control over the mining process.

As described by Sompolinsky and Zohar, GHOST solves the first issue of network security loss by including stale blocks in the calculation of which chain is the “longest”; that is to say, not just the parent and further ancestors of a block, but also the stale descendants of the block’s ancestor (in Ethereum jargon, “uncles”) are added to the calculation of which block has the largest total proof-of-work backing it. To solve the second issue of centralization bias, we go beyond the protocol described by Sompolinsky and Zohar, and also provide block rewards to stales: a stale block receives 87.5% of its base reward, and the nephew that includes the stale block receives the remaining 12.5%. Transaction fees, however, are not awarded to uncles.

Ethereum implements a simplified version of GHOST which only goes down seven levels. Specifically, it is defined as follows:

  • A block must specify a parent, and it must specify 0 or more uncles
  • An uncle included in block B must have the following properties:
  • It must be a direct child of the kth generation ancestor of B, where 2 <= k <= 7.
  • It cannot be an ancestor of B
  • An uncle must be a valid block header but does not need to be a previously verified or even valid block
  • An uncle must be different from all uncles included in previous blocks and all other uncles included in the same block (non-double-inclusion)
  • For every uncle U in block B, the miner of B gets an additional 3.125% added to its coinbase reward and the miner of U gets 93.75% of a standard coinbase reward.

This limited version of GHOST, with uncles includable only up to 7 generations, was used for two reasons. First, unlimited GHOST would include too many complications in the calculation of which uncles for a given block are valid. Second, unlimited GHOST with compensation as used in Ethereum removes the incentive for a miner to mine on the main chain and not the chain of a public attacker.

You can download Bitcoin Whitepaper PDF by clicking on the following download button. 


Bitcoin Whitepaper PDF Download Link

Report This
If the download link of Gujarat Manav Garima Yojana List 2022 PDF is not working or you feel any other problem with it, please Leave a Comment / Feedback. If Bitcoin Whitepaper is a illigal, abusive or copyright material Report a Violation. We will not be providing its PDF or any source for downloading at any cost.

Leave a Reply

Your email address will not be published.